DEPARTMENT OF MATHEMATICS

15MA302 - Discrete Mathematics

CYCLE TEST-I

Duration: 100 min

Answer all the questions

Max. Marks: 50

Part -A (5 X 4 marks = 20 marks)

1. Form the truth table for $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$.

2. Symbolize the following.: (i) All integers are either positive or negative.

(ii) Some real numbers are rational.

2.(i) If a function $f: Z \rightarrow Z$ is defined by f(x) = 2x+3, prove that f is 1-1 and onto.

(ii) Let $R = \{ (1,2), (2,2), (3,4) \}$ be a relation on $A = \{1,2,3,4\}$. Find R^2 and R^3

4. If we select 10 points in the interior of an equilateral triangle of side 1, show that there must be atleast two points whose distance apart is less than 1/3.

8. Draw the Hasse diagram for the partial ordering $R = \{(A,B)/A \subseteq B\}$ on the power set P(S) where $S = \{a, b, c\}$

Part -B (3 X 10 marks = 30 marks) Answer any three questions

6. i) Show that b can be derived from the premises a - b, c - b, d - (avc), d, by indirect method.

ii) Show that $p \rightarrow q$, $p \rightarrow r$, $q \rightarrow \neg r$ and p are inconsistent.

7. i) Using mathematical induction, prove that, $(6 \times 7^n) - (2 \times 3^n)$ is divisible by 4 for $n \ge 1$.

ii) If f: A \rightarrow B and and g: B \rightarrow C are invertible functions, then show that (g₀f): A \rightarrow C is also invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

8/Let $A=\{1,2,3,4\}$ and $R=\{(1,2),(2,3),(3,3),(3,4),(4,2)\}$. Find Reflexive closure and symmetric closure of R. Also find the transitive closure of R using Warshall's algorithm.

9. Prove that $(i)(x)(P(x) \rightarrow Q(x)) \land (x)(R(x) \rightarrow \neg Q(x)) \Rightarrow (x)(R(x) \rightarrow \neg P(x))$ $(ii)(x)(H(x) \rightarrow M(x)) \land (\ni x)H(x) \Rightarrow (\ni x)M(x)$

All the best